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Computational fluid flow in two dimensions using simple
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SUMMARY

The application of the four nodes for velocity and three nodes for pressure (T4/C3) element discretization
technique for simulating two-dimensional steady and transitional flows is presented. The newly developed
code has been validated by the application to three benchmark test cases: driven cavity flow, flow over
a backward-facing step, and confined surface rib flow. In addition, a transitional flow with vortex
shedding has been studied. The numerical results have shown excellent agreement with experimental
results, as well as with those of other simulations. It should be pointed out that the advantages of the
T4/C3 finite element over other higher-order elements lie in its computational simplicity, efficiency, and
less computer memory requirement. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The finite element simulations of various flow problems using higher-order elements, such as
the eight nodes for velocity and four nodes for pressure (Q8/C4 element [1]), Q9/C4 element
[2], and T6/C3 element [2], have been widely tested. The effort associated with these
higher-order elements mainly resides in the integration of the integrand through complex finite
element formulations. Furthermore, the degrees of freedom for these higher-order elements,
such as Q9/C4, having 22 variables more than that of T4/C3 [3], which is 11 degrees of
freedom, consume more computational resources. However, the use of the simple three nodes
for pressures and four nodes for velocities (T4/C3) in flow simulations has not been
investigated extensively.

In this paper, we would like to present a detailed T4/C3 finite element formulation in
two-dimensional flow simulation, with the developed code validated by three test cases for
steady state and a case for transitional flow in vortex shedding. The chosen test cases for the
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steady state are driven cavity flow, flow over a backward-facing step, and confined surface rib
flow.

Recently, vortex meters to measure the flow rate have been studied and applied to various
industrial fluid flows. The principle for a vortex flow meter has also attracted a lot of attention
[4–6]. A vortex shedding after a square rod for transitional flow in two dimensions is also
simulated by means of the T4/C3 finite element formulation.

2. GOVERNING EQUATIONS AND COMPUTATIONAL METHOD

The Navier–Stokes equations in two dimensions for incompressible flow are represented by
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The principle of mass conservation must not be violated, and is represented by
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in which u and 6 are the velocities in the x- and y-directions respectively, p is the pressure, Fx

and Fy are the body forces in the x- and y-directions respectively, r is the density, and n

denotes the kinematic viscosity.
The related conceptual configurations for 4- and 3-node shape functions respectively are

shown in Figure 1, and the T4/C3 element shape functions for velocity and pressure are
represented by Equations (4) and (5)
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in which Ni (i=1, 2, 3, 4) is the shape function for velocity, Mi is the shape function for
pressure, and Li is defined by

Li=ai+bix+ciy

where
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and where � represents the area of triangular element.
Following the usual Galerkin procedure, Equations (1)–(3), incorporating the shape func-

tions defined by Equations (4) and (5), become time-dependent discretized forms, as Equations
(6)–(8)

%
ne

1

&
A e

!
Ni
�%

4

1

Nj

(uj

(t
+%

4

1

Nkuk %
4

1

(Nj

(x
uj+%

4

1

Nk6k %
4

1

(Nj

(y
uj
n

+
(Ni

(x
�

2n %
4

1

(Nj

(x
uj−

1
r

%
3

1

Mlpl
�

+n
(Ni

(y
�%

4

1

(Nj

(y
uj+%

4

1

(Nj

(x
6j
�"

dAe

=
&

G

!
Ni

1
r

�
−%

3

1

Mlpl+2m %
4

1

(Nj

(x
uj
�

lx+nNi
�%

4

1

(Nj

(x
6j+%

4

1

(Nj

(y
uj)
�

ly
"

dG

+%
ne

1

&
A e

NiFx dAe (6)

Figure 1. Elements for pressure and velocity.
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The resulting equations can be written in matrix form

Mg; +Al=F (9)

in which l={li}, g; ={g; i}, M= [mij ], and A= [aij ]. Their forms are listed below
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and F= [Fi ] is called a load vector or forcing function. The components of the forcing function
are given by

Fi=%
ne

1

&
A e

Á
Ã
Í
Ã
Ä

fi,1

fi,2

fi,3

Â
Ã
Ì
Ã
Å

dAe+%
ne

1

&
Ge

Á
Ã
Í
Ã
Ä

bi,1

bi,2

bi,3

Â
Ã
Ì
Ã
Å

dG

where

fi,1=Ni

Fx

r
, fi,2=0, fi,3=Ni

Fy

r

bi,1=
Ni fx

r
, bi,2=0, bi,3=

Ni fy

r

and Fx and Fy are directional body forces and are represented by

fx= lx
�

−p+2m
(u
(x
�

+ lym
�(u
(y

+
(6

(x
�

, fy= ly
�

−p+2m
(6

(y
�

+ lxm
�(u
(y

+
(6

(x
�

Hence fx and fy can be immediately identified as normal and tangential traction components
and lx and ly are direction cosines of the outward normal to boundary Ge.

It should be noted that the time derivatives for velocities can be expanded in finite difference
form as
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in which u denotes the factor of implicit scheme [7] and u\0.5 stands for unconditionally
stable [7]. The steady state, incompressible governing equations can also be treated in a similar
way. The frontal solution [8] and Picard iteration procedure [1] were employed to solve these
discretized equations. It should be pointed out that this formulation did not use the upwinding
technique to suppress the wiggles, while the local Reynolds number (Re= (uc× lc)/n, in which
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uc and lc are local characteristic velocity and length respectively) was increased. Convergence
is defined by the specification that the maximum relative error is less than 0.01 and this
criterion is acceptable when numerical results are compared with experimental data or other
simulations [9–14].

3. NUMERICAL RESULTS

3.1. Dri6en ca6ity flow

The flow system considered is a lid-driven cavity shown (Figure 2). The three non-slip
boundary conditions and a slip boundary condition with u0=1 for the domain of interest are
also shown in Figure 2. For the T4/C3 element, only one boundary condition for pressure was
adopted to avoid the numerical singularity. In this system, the Reynolds number is expressed
as

Re=
u0× l

n

in which u0 is the velocity at the top side and l is length of the cavity.
Two different grids are shown in Figures 3 and 4 for the coarse mesh and the fine mesh

respectively. The coarse mesh contains 225 nodal points and 392 elements. The fine mesh
contains 1000 nodal points and 1874 elements. For a Reynolds number equal to 1.0E−5, the
center of the eddy is approximately located at x=0.5 and y=0.75. The results of Re=1.0E−
5 and of Re=400, as well as a comparison with Burggraf [9], are shown in Figure 5. The
corresponding streamline plots are shown in Figures 6 and 7 respectively, for illustrative
purposes. It is shown that the results of Re=400 from the fine mesh are clearly superior to
those from the coarse mesh. For Re=1000, the simulation with the coarse mesh failed to
converge because of no upwinding technique involved. However, Figure 8 depicts the

Figure 2. Geometry and boundary conditions for driven cavity flow.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 187–205
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Figure 3. Coarse mesh for driven cavity flow.

Figure 4. Fine mesh for driven cavity flow.

streamline plot of the simulation results for Re=1000 from the fine mesh and the results are
identical to Ren and Utness [10]. All calculations were performed on a Pentium II 200, and the
program was written in Fortran.

The comparisons between the Q8/C4 and the T4/C3 finite elements for driven cavity flow
simulation in different structural meshes are listed in Table I. It demonstrates that the T4/C3
element is more efficient than the higher-order elements in terms of the computational speed.

3.2. Flow o6er a backward-facing step

The flow over a backward-facing step frequently occurs in many chemical engineering
processes. The simulated geometry considered and boundary conditions are depicted in Figure
9 The inlet boundary condition was a fully developed Poiseuille parabolic velocity profile, and
zero pressure condition was adopted at the outlet. In this system, the Reynolds number is
defined as

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 187–205
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Figure 5. Result compared with Burggraf [9].

Figure 6. Streamline plotting for Re=0.00001; (a) coarse mesh, (b) fine mesh.

Re=
u0× l

n

where u0 is the mean inlet velocity and l is the height of the backward step.
Again, two different sizes of grid were used to show the grid independence of the solution.

Coarse and fine meshes are shown in Figures 10 and 11 respectively, as well as the

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 187–205
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Figure 7. Streamline plotting for Re=400; (a) coarse mesh, (b) fine mesh.

Figure 8. Results for Re=1000; (a) streamline plot, (b) comparison with Ren and Utnes [10].

Table I. Comparisons between the Q8/C4 element and the T4/C3 element.

CPU time Number ofNumber ofNumber ofElement MaximumNumber of
nodeselements frontal widthtype iterations(s) equations

1281.85 80365Q8/C4 100 341
35 15.70 9T4/C3 128 499209
41 39.33 11T4/C3 200 763321

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 187–205
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Figure 9. Geometry and boundary conditions for backward-facing step.

Figure 10. Coarse mesh for backward-facing step.

Figure 11. Fine mesh for backward-facing step.

Figure 12. Streamline plotting for Re=73 in coarse mesh.

Figure 13. Streamline plotting for Re=73 in fine mesh.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 187–205
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Figure 14. Comparisons with other results.

corresponding streamlines of Re=73 (illustrated in Figures 12 and 13). Even the results from
the coarse mesh show a very good agreement with the results of Taylor [1], the experimental
data [11], or Atkins et al. [12], as illustrated in Figure 14.

3.3. Confined surface rib flow

This case could be found in many practical applications, such as the inserted fins with air or
liquid flowing through them and are often used for heat transfer enhancement. The simulated
geometry considered and the boundary conditions are indicated in Figure 15. The inlet velocity
is uniform and the outlet condition is a zero pressure condition. In this system, the Reynolds
number is defined as

Re=
u0× l

n

where u0 is the inlet velocity and l is length of the rib.
The mesh used is shown in Figure 16 and the corresponding streamline profile of Re=200

is shown in Figure 17. The recirculation zone length, which is the ratio of vortex length to rib
length, is approximately equal to 7.00. The similar result obtained by Roache and Mueller [13]
and Leone and Gresho [14] was approximately 6.75. The relative difference is 3.57 per cent.

Figure 15. Geometry and boundary conditions for flow passing surface rib.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 187–205
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Figure 16. Mesh for surface rib flow.

Figure 17. Streamline plotting for surface rib flow (Re=200).

Figure 18. Geometry and boundary conditions for vortex shedding after a square.

3.4. Two-dimensional 6ortex shedding simulation

The complete geometry and boundary conditions are shown in Figure 18. It should be noted
that the zero traction boundary condition was prescribed at the outlet.

The mesh profile is shown in Figure 19. Two non-dimensional groups are defined as

Re=
u0× l

n

and

St=
f× l
u0

in which u0 is the inlet velocity at the centerline, l is the length of the square, and f is the
frequency of vortex shedding.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 187–205
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Figure 19. Mesh for vortex shedding.

For comparison purposes, a flow field of Re=250 was simulated. In order to see the vortex
oscillation, local points (3, 0), (5, 0), and (7, 0) were chosen and the histories of (u, p, 6) for
these points are shown in Figures 20–28. The vibrated pressure distributions are also shown
in Figures 29 and 30. In this case, the Strouhal number (St), the frequency of the oscillation
in the y-direction, is approximately 0.14. This shows a good agreement with the result of Davis
et al. [4].

Figure 20. u history for point (3, 0).

Figure 21. p history for point (3, 0).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 187–205
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Figure 22. 6 history for point (3, 0).

Figure 23. u history for point (5, 0).

Figure 24. p history for point (5, 0).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 187–205
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Figure 25. 6 history for point (5, 0).

Figure 26. u history for point (7, 0).

Figure 27. p history for point (7, 0).

Figure 28. 6 history for point (7, 0).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 187–205
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Figure 29. Pressure variation for vortex shedding (Re=250).

4. CONCLUSIONS

The T4/C3 element fluid flow simulations for both steady state and transitional vortex
shedding in two dimensions are carried out in this paper, Because of its simplicity and the
exact surface integration, as well as smaller frontal widths [8] compared with those of
higher-order elements, the intense calculations can be substantially reduced in every iteration
while advancing the time step. It should be pointed out again that this formulation does not
use the upwinding scheme to stabilize or speed up the numerical solutions.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 187–205
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Figure 30. Pressure variation for vortex shedding (Re=250).

APPENDIX A. NOMENCLATURE

A advection–diffusion matrix
Ae domain of element
C continuous shape function
F load vector
Fx body force aligned in the x co-ordinate direction

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 187–205
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body force aligned in the y co-ordinate directionFy

frequency of the vortex sheddingf
lc characteristic length

x-direction cosine of the outward normal to boundarylx
y-direction cosine of the outward normal to boundaryly

M mass matrix
shape function for three nodes in triangular elementsMi

shape function for four nodes in triangular elementsNi

number of elementsne
p pressure v

Reynolds numberRe
quadrangular elementQ
Strouhal numberSt
triangular elementT
x velocity componentu
characteristic velocityu0

6 y velocity component
� area of triangular element

Greek letters
viscositym

kinematic viscosityn

densityr

factor of implicit schemeu

boundaryG

Superscript
kth time step[k ]

Subscript
i ith node in element
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